FOUR NEW DITERPENOID ALKALOIDS FROM DELPHINIUM PENTAGYNUM

A. G. GONZÁLEZ, G. DE LA FUENTE and R. DÍAZ

Instituto de Productos Naturales Orgánicos, CSIC, La Laguna, Tenerife, Spain

(Revised received 2 October 1981)

Key Word Index—Delphinium pentagynum; Ranunculaceae; diterpenoid alkaloids; dihydrogadesine; 14-acetyldihydrogadesine; pentagynine; dihydropentagynine.

Abstract—Four new diterpenoid alkaloids, dihydrogadesine, 14-acetyldihydrogadesine, pentagynine and dihydropentagynine, were isolated and identified in *Delphinium pentagynum*.

INTRODUCTION

We wish to report the structure determination of dihydrogadesine (1), 14-acetyldihydrogadesine (2), pentagynine (3) and dihydropentagynine (4), four new C_{19} diterpenoid alkaloids found in *Delphinium pentagynum* Lam.

Dihydrogadesine, $C_{23}H_{37}NO_6$, mp 136–138°, crystallized from petrol ether-ethyl acetate, $[\alpha]_D + 54^\circ$ (EtOH; c, 0.1). IR (KBr), 3500, 3280 (OH) and 1080 cm⁻¹ (ether); ¹H-NMR (90 MHz, CDCl₃), δ 1.10 (3H, s, C-CH₃), 1.10 (3H, t, J = 7 Hz, N-CH₂-CH₃), 3.37 (6H, s, two OCH₃), 3.65 (1H, m, $W_{1/2} = 6$ Hz, H-1 β), 3.98 (1H, s, H-6 α) and 4.12 (1H, dd, $J_1 = J_2 = 4.5$ Hz, H-14 β) [1]. This alkaloid proved to be identical (mp, IR, ¹H-NMR and MS) with the LiAlH₄ reduction product of gadesine (5) [2] and therefore its structure was established.

14-Acetyldihydrogadesine was isolated as a resin, M^+ 465.2733, $C_{25}H_{39}NO_7$ (calc. 465.2740). IR (KBr),

I $R = R_1 = R_2 = H$, $R_3 = OH$, $R_4 = \beta - OMe$, $\alpha - H$ 2 $R = R_2 = H$, $R_1 = Ac$, $R_3 = OH$, $R_4 = \beta - OMe$, $\alpha - H$ 4 $R = R_1 = R_2 = R_3 = H$, $R_4 = \beta - H$, $\alpha - OMe$

4 R = R₁ = R₂ = R₃ = H, R₄ = β - H, α - OMe 6 R = R₁ = B₂, R₂ = R₃ = H, R₄ = β - H, α - OMe

7 R=R₁=B₂, R₂=Ac, R₃=H, R₄= β -H, α -OMe

3 R = H, R₁ = β - H, α - OMe **5** R = OH, R₁ = β - OMe, α - H 3440 (OH), 1275 and $1240 \,\mathrm{cm}^{-1}$ (acetate). The ¹H-NMR (90 MHz, CDCl₃) displayed signals at $\delta 2.08$ (3H, s) and 4.82 (1H, dd, $J_1 = J_2 = 4.5 \,\mathrm{Hz}$) which confirmed the acetate group to be situated on C-14 α [1]. Its alkaline hydrolysis yielded dihydrogadesine allowing structure 2 to be assigned to this base.

Pentagynine, $C_{23}H_{35}NO_5$, mp 198–201°, $[\alpha]_D + 72^\circ$ (EtOH, c 0.12); IR (KBr), 3480 (OH), 1000, 1085 (ether), 880 and 1000 cm⁻¹ (carbinolamine inner ether [4]); ¹H-NMR (90 MHz, C_6D_6), δ 0.75 (3H, s, C-CH₃), 0.96 (3H, t, J = 7 Hz, N-CH₂-CH₃), 2.90 and 3.15 (3H each, s, two OCH₃), 3.62 (1H, s, H-19), 3.64 (1H, m, $W_{1/2} = 7$ Hz, H-1 β), 3.94 (1H, d, J = 7 Hz, H-6 β), 4.13 (1H, dd, $J_1 = J_2 = 4.5$ Hz, H-14 β). The MS exhibited a peak at m/z 349[M - 56]⁺ (18), caused by loss of acroleine from ring A owing to the carbinolamine inner ether [5].

LiAlH₄ reduction of pentagynine gave the aminoalcohol (4). Its IR did not show the absorptions of the inner ether. The ¹H-NMR gave a signal at δ 3.78 (1H, m, $W_{1/2} = 6 \text{ Hz}$, H-1 β) and the MS a base peak at $390[M - OH]^+$ from loss of C-1 α OH 6, thus confirming presence of $C-1\alpha OH$ in 4 C-1-C-19 ether in pentagynine. By benzoylation with C₆H₅OCl-pyridine 4 was converted into the dibenzoate (6), mp 178–181°, 615 M⁺, IR (KBr), 1715 and 715 cm⁻¹ (benzoate). ¹H-NMR (90 MHz, CDCl₃), $\delta 4.93$ (1H, dd, $J_1 = J_2 = 4.5$ Hz, H-14 β), and 5.20 (1H, q, $J_1 = 7 \text{ Hz}$, $J_2 = 10 \text{ Hz}$, H-1 β) [1]. Treatment of 6 with Ac₂O and catalytic amounts of p-toluenesulfonic acid at room temp. yielded the 1,14-dibenzoyl-8acetyl derivative (7) as a resin, m/z 657 M⁺. The ¹H-NMR gave a highly shielded 3-proton signal at δ 1.43 due to the acetoxy-protons, characteristic of a C-14 benzoyl-C-8 acetyl substitution pattern [7].

The ¹³C-NMR (20.1 MHz, CDCl₃) of pentagynine: 891.19 (d, C-1), 22.96 (t, C-2), 30.22 (t, C-3), 38.32 (s, C-4), 37.34 (d, C-5), 84.30 (d, C-6), 56.88 (d, C-7), 73.57 (s, C-8), 52.63 (d, C-9), 39.04 (d, C-10), 47.50 (s, C-11), 28.65 (t, C-12), 45.72 (d, C-13), 75.50 (d, C-14), 39.04 (t, C-15), 82.17 (d, C-16), 61.72 (d, C-17), 20.20 (q, C-18), 68.75 (d, C-19), 47.84 (t, N-CH₂-CH₃), 14.35 (q, N-CH₂-CH₃), 58.00 (q, C-6), 56.35 (q, C-16'), is consistent with structure 3. The chemical shifts

have been assigned by comparison with the ¹³C-NMR spectra of the related alkaloids chasmanine and neoline [8].

Dihydropentagynine, $C_{23}H_{37}NO_5$, mp 150–154°, $[\alpha]_D + 43^\circ$ (EtOH; c, 0.12). IR (KBr), 3460 (OH) and 1090 cm⁻¹ (ether). ¹H-NMR (90 MHz, CDCl₃), δ 1.08 (3H, s, C-CH₃), 1.12 (3H, t, J = 7 Hz, N-CH₂-CH₃), 3.38 (6H, s, two OCH₃), 3.78 (1H, m, $W_{1/2} = 6$ Hz, H-1 β), 3.97 (1H, d, J = 8 Hz, H-6 β) and 4.12 (1H, dd, $J_1 = J_2 = 4.5$ Hz, H-14 β). This base was identical with the amino-alcohol (4).

The co-occurrence in the same plant of gadesinedihydrogadesine, pentagynine-dihydropentagynine, together with songoramine-songorine [9], suggests the possible existence of other such pairs in nature. They also form a redox system which may play a significant role in plant metabolism.

Acknowledgements—This work has been partially financed by a grant from the Assessorial Commission for Scientific and Technical Investigation (CAICT) of Spain.

REFERENCES

- Pelletier, S. W., Keith, L. H. and Parthasarathy, P. C. (1967) J. Am. Chem. Soc. 89, 4146.
- González, A. G., de la Fuente, G., Díaz, R., Fayos and Martínez-Ripoll (1979) Tetrahedron Letters, 79.
- 3. Pelletier, S. W., Mody, N. V., Sawhney, R. S. and Bhattacharyya, J. (1977) Heterocycles 7, 327.
- Auct, R., Clayton, D. and Marion, L. (1957) Can. J. Chem. 35, 397.
- Pelletier, S. W. and Page, S. W. (1973) Chemistry of the Diterpene Alkaloids in The Alkaloids—Spec. Per. Rep. (Saxton, J. E., ed.), Vol. 3, p. 235. The Chemical Society, London.
- Yunusov, M. S., Rashkes, Ya. V. and Yunusov, S. Yu (1972) Khim. Prir. Soedin. 85.
- 7. Tsuda, Y. and Marion, L. (1963) Can. J. Chem. 41, 1634.
- Pelletier, S. W. and Djarmati, Z. (1976) J. Am. Chem. Soc. 98, 2626.
- 9. Yunusov, M. S., Rashkes, Ya. V. and Yunusov, S. Yu (1973) Khim. Prir. Soedin. 127.